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Problems
• While LLMs (e.g., GPT-4) show remarkable capabilities on NLP, their performance 

of existing on chemistry tasks is discouragingly low.
• Existing deep learning models for chemistry tasks are usually task-specific models, 

which neglect shared chemistry knowledge across tasks and can hardly be adapted to 
different tasks.

Our Solution
• We construct a large-scale, comprehensive, and high-quality dataset, SMolInstruct, 

for instruction tuning and evaluation. It has 14 tasks illustrated in the figure below.

Dataset: osunlp/SMolInstruct

• We build a series of LLMs for chemistry named LlaSMol by fine-tuning four open-
source LLMs with LoRA.

• We conduct comprehensive experiments and provide insights.
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Our best model: osunlp/LlaSMol-Mistral-7B
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Introduction Results

MG FS

• LlaSMol models fine-tuned on our SMolInstruct achieve SoTA among LLMs.
• Regarding molecular representations, Canonicalizing SMILES helps, and SMILES is 

generally better than SELFIES.
• Multi-task training is better than single-task training overall.
• Removing one certain task from the training set does not consistently influence the 

performance on other tasks, showing a degree of independence among the tasks.

Awesome dataset, SoTA LLMs for chemistry tasks, and more insights!

▲ 4 types of 14 tasks in the proposed SMolInstruct dataset, determined with advice from domain 
experts for their real-world practicality and benefits for building strong foundation models. 

Dataset Construction

• Data Collection: Collect the original data from multiple large-scale sources such as 
PubChem, USPTO-full, etc.

• Quality Control: Apply rigorous scrutiny to remove 1) chemically invalid SMILES, 
2) wrong or inaccurate information, and 3) duplicated samples.

• Data Splitting: It requires careful handling for multi-task datasets to avoid data 
leakage across tasks and to compare with other datasets. We carefully ensure:
• Related samples for related tasks (like FS and RS) are placed in the same split.
• Samples with identical input (and different outputs) are placed in the same split to 

avoid biased evaluation.
• For fair comparison, the split is compatible with existing datasets.

• Instruction Creation: Manually craft several templates and apply GPT-4 to rephrase. 
Use special tags to encapsulate core information to inform models and facilitate 
answer extraction, such as:

<SMILES> … </SMILES>, <IUPAC> … </IUPAC>.

▲ Partial results of overall comparison with Claude 3 Opus, GPT-4, Molinst, ChemLLM, and non-
LLM task-specific SoTA models. Full results can be found in the paper.

▲ Partial results of ablation study. Full results can be found in the paper.

Takeaways
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▲ Results of single-task vs multi-task training. Orange cells represent better positive improvements.

▲ Results of removing certain tasks. Orange cells represent better results than LlaSMolMistral while 
blue cells represent worse results.


