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Awesome dataset, SOTA LLMs for chemistry tasks, and more insights!

Introduction

Problems

* While LLMs (e.g., GPT-4) show remarkable capabilities on NLP, their performance
of existing on chemistry tasks 1s discouragingly low.

* Existing deep learning models for chemistry tasks are usually task-specific models,
which neglect shared chemistry knowledge across tasks and can hardly be adapted to
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different tasks.

Our Solution

* We construct a large-scale, comprehensive, and high-quality dataset, SMollnstruct,
for mstruction tuning and evaluation. It has 14 tasks illustrated in the figure below.

¥ Dataset: osunlp/SMollnstruct

Name Conversion 0=C=0 Property Prediction g%
co, —
IUPAC to Molecular Formula (NC-12F) ESOL (PP-ESOL) g®
Query: What is the molecular formula of the compound with this IUPAC name Query: How soluble is <SMILES> CC(C)Cl </SMILES> ?

<IUPAC> 2,5-diphenyl-1,3-oxazole </IUPAC> 2 Response: Its log solubility is <NUMBER> -1.41 </NUMBER> mol/L.

Response: <MOLFORMULA> C15H1INO </MOLFORMULA>

LIPO (PP-LIPO)

Query: Predict the octanol/water distribution coefficient logD under the circumstance of pH
7.4 for <SMILES> NC(=0)C1=CC=CC=C10 </SMILES>.

Response: <NUMBER> 1.090 </NUMBER>

TUPAC to SMILES (NC-12S)

Query: Could you provide the SMILES for

<IUPAC> 4-ethyl-4-methyloxolan-2-one </I[UPAC> ?

Response: Of course. It's <SMILES> CCC1(C)COC(=0)C1 </SMILES>

BBBP (PP-BBBP)

SMILES to Molecular Formula (NC-S2F) Query: Is blood-brain barrier permeability (BBBP) a property of
Query: Given the SMILES representation <SMILES> CCNC(=0)/C=C/C1=CC=CC(Br)=C1 </SMILES>?

<SMILES> S=P1(N(CCCI)CCCINCCCO1 </SMILES>, what would be its molecular formula? | Response: <BOOLEAN> Yes </BOOLEAN>
Response: It is <MOLFORMULA> C7H15CI2N20OPS </MOLFORMULA> . . .
ClinTox (PP-ClinTox)

Query: Is <SMILES> COC[C@@H](NC(C)=0)C(=O)NCC1=CC=CC=C1 </SMILES> toxic?
Response: <BOOLEAN> No </BOOLEAN>

SMILES to IUPAC (NC-S2I)

Query: Translate the given SMILES formula of a molecule

<SMILES> CCC(C)C1CNCCCNC1 </SMILES> into its [UPAC name.
Response: <ITUPAC> 3-butan-2-yl-1,5-diazocane </TUPAC>

HIV (PP-HIV)

Query: Can <SMILES> CC1=CN(C2C=CCCC20)C(=0O)NC1=0 </SMILES> serve as an
inhibitor of HIV replication?

Response: <BOOLEAN> No </BOOLEAN>

Molecule Description

111

SIDER (PP-SIDER)

Query: Are there any known side effects of

<SMILES> CC1=CC(C)=C(NC(=O)CN(CC(=0)0)CC(=0)0)C(C)=C1Br </SMILES>
affecting the heart?

Response: <BOOLEAN> No </BOOLEAN>

Molecule Captioning (MC)

Query: Describe this molecule:

<SMILES> CCOC(=0)C1=CN=CNI1[C@H](C)C1=CC=CC=C1 </SMILES>
Response: The molecule is an imidazole derivative with short-acting sedative, hypnotic, and
general anesthetic properties. Etomidate appears to have gamma-aminobutyric acid (GABA)

like effects, mediated through GABA-A receptor. The action enhances the inhibitory effect of . .
GABA on the central nervous system by causing chloride channel opening events which leads to Chemical Reaction

membrane hyperpolarization. mjl'.

. Forward Synthesis (FS) @
Molecule Generation (MG) Query: <SMILES> NC1=CC=C20COC2=C1.0=CO</SMILES>
Query: Give me a molecule that satisfies the conditions outlined in the description: The Based on the reactants and reagents given above, suggest a possible product.
Response: A possible product can be <SMILES> O=CNC1=CC=C20C0OC2=C1 </SMILES>

molecule is a member of the class of tripyrroles that is a red-coloured pigment with antibiotic
properties produced by Serratia marcescens. It has a role as an antimicrobial agent, a biological
pigment, a bacterial metabolite, an apoptosis inducer and an antineoplastic agent. It is a
tripyrrole, an aromatic ether and a ring assembly.

Response: Here is a potential molecule:

<SMILES> CCCCCC1=C(C)NC(/C=C2\N=C(C3=CC=CN3)C=C20C)=C1 </SMILES>

Retrosynthesis (RS)

Query: Identify possible reactants that could have been used to create the specified product.
<SMILES> CC1=CC=C(N)N=CIN </SMILES>

Response: <SMILES> CC(C#N)CCC#N.N </SMILES>

A 4 types of 14 tasks in the proposed SMollnstruct dataset, determined with advice from domain
experts for their real-world practicality and benefits for building strong foundation models.

* We build a series of LLMs for chemistry named LlaSMol by fine-tuning four open-
source LLMs with LoRA.

Mistral

Code Llama

Llama 2

Galactica

¥, Our best model: osunlp/L.1laSMol-Mistral-7B

* We conduct comprehensive experiments and provide insights.

Dataset Construction

* Data Collection: Collect the original data from multiple large-scale sources such as
PubChem, USPTO-full, etc.

* Quality Control: Apply rigorous scrutiny to remove 1) chemically invalid SMILES,
2) wrong or inaccurate information, and 3) duplicated samples.

* Data Splitting: It requires careful handling for multi-task datasets to avoid data
leakage across tasks and to compare with other datasets. We carefully ensure:

* Related samples for related tasks (like FS and RS) are placed 1in the same split.

* Samples with 1dentical input (and different outputs) are placed in the same split to
avold biased evaluation.

* For fair comparison, the split is compatible with existing datasets.

* Instruction Creation: Manually craft several templates and apply GPT-4 to rephrase.
Use special tags to encapsulate core information to inform models and facilitate
answer extraction, such as:

<SMILES> ... </SMILES>, <IUPAC> ... </IUPAC>.
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A Partial results of overall comparison with Claude 3 Opus, GPT-4, Molinst, ChemLLM, and non-
LLM task-specific SOTA models. Full results can be found 1n the paper.
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using SELFIES train on Mol-Instructions

A Partial results of ablation study. Full results can be found 1n the paper.

Task Metric Single-Task Multi-Task Improv.
NC-I2F EM (%) 86.8 87.9 1.1
NC-I12S EM (%) 67.6 70.1 24
NC-S2F EM (%) 93.2 93.2 0.0
NC-521 EM (%) 274 29.0 1.5
PP-ESOL  RMSE] 20.616 1.150 19.466
PP-Lipo RMSE| 1.241 1.010 0.231
PP-BBBP Acc (%) 68.5 74.6 6.1
PP-Clintox Acc (%) 79.9 93.1 13.2
PP-HIV Acc (%) 96.7 96.7 0.0
PP-SIDER  Acc (%) 64.3 70.7 6.4
MC METEOR 0.299 0.452 0.153
MG FTS (%) 33.1 61.7 28.6
FS EM (%) 62.6 63.3 0.7
RS EM (%) 31.5 32.9 1.4

A Results of single-task vs multi-task training. Orange cells represent better positive improvements.

NC-I2F NC-I2S NC-S2F NC-S2I PP-ESOL PP-Lipo PP-BBBP PP-Clintox PP-HIV PP-SIDER MC MG FS RS
Model EM (%) EM (%) EM (%) EM (%) RMSE RMSE  Acc (%) Acc (%) Acc(%)  Acc(%) METEOR FTS (%) EM (%) EM (%)
w/oNC : = - - 1.520 1.090 76.1 93.1 96.8 70.6 0.436 54.9 63.2 33,5
w/o PP 87.9 70.7 93.5 28.7 = = - 2 = = 0.447 62.3 64.2 33.1
w/o MC 87.6 71.0 93,5 27.8 1.133 1.057 74.1 93.1 96.8 70.9 = 64.1 63.3 33.4
w/o MG 87.8 69.6 93.4 27.8 1.231 0.982 773 93.1 96.8 70.9 0.445 - 63.4 34.0
w/o FS 87.9 70.4 93.8 29.5 1.278 1.288 70.6 93.1 96.8 70.8 0.452 63.2 - 33.1
w/0o RS 88.0 71.1 93.7 29.7 1.203 1.048 72.1 93.1 96.8 70.6 0.450 62.6 61.9 =
L1aSMol; 1,ma 2 87.9 70.1 93.2 29.0 1.150 1.010 74.6 93.1 96.7 70.7 0.452 61.7 63.3 32.9

A Results of removing certain tasks. Orange cells represent better results than LlaSMoly;.,; While
blue cells represent worse results.

Takeaways

* LlaSMol models fine-tuned on our SMollnstruct achieve SOTA among LLMs.

* Regarding molecular representations, Canonicalizing SMILES helps, and SMILES 1s
generally better than SELFIES.

e Multi-task training is better than single-task training overall.

 Removing one certain task from the training set does not consistently influence the
performance on other tasks, showing a degree of independence among the tasks.
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